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0 •"ABSTRACT
J,

A mathematical model for systolic architectures is sug-

gested and used to verify the operation of certain systolic

networks. The data items appearing on the communication

links of such a network at successive time units are

represented by data sequences and the computations performed

by the network-cells are modeled by a system of difference

* equations involving operations on the various data

sequences. The input/output descriptions, which describe

the global effect of the computations performed by the net-

work, are obtained by solving this system of difference

equations. This input/output description can then be used

to verify the operation of the network. The suggested

verification technique is applied to four different systolic

networks proposed in the literature.
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. ,- Introduction.

Systolic architectures, pioneered by H. T. Kung, are

becoming increasingly attractive due to continuous advances

in VLESI technology. This type of network architectures has

two properties very desirable in VLSI implementations;

namely, regularity and the local nature of the interconnec-

tions.

A systolic network can be viewed as a network composed

* of a few types of computational cells, regularly intercon-

nected via local data links and organized such that streams

of data flow smoothly within the network. For an introduc-

tion to systolic architectures, we refer to (10] where

further references to specific examples are given.

As an introductory example, wp briefly review a simple

systolic network for the computation of one dimensional con-

volution expressions [10]. More specifically, given a

sequence of numbers (xI, x 2 , ... , and a sequence of

weights (w1 , w2 , ... wk, we want to compute the sequence

(YI' Y2 ' Yn+l-k where each yi is defined by:

k
Y W wj xi+_ 1 . (1.1)

Figure 1 shows the building cell of the 1-D convolution

network under discussion. It is a multiply/add cell with a

*: . one word memory to store a real number w.
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At each clock pulse, the cell receives two input data items;

Xin and Yin ' performs its computation and delivers at the

next clock pulse the outputs x 0 W Xin and

Y Yin + w 'in- Figure 2 shows three such cells con-

nected into a network that performs the convolution calcula-

* tion for the case k-3. The elements x1 , x2 , ... xn are

*pumped in at the left end of the network, each separated

from the other by one time unit, and zeroes are pumped inAt

the right end. To illustrate the operation of the array, we

show in figure 3 the relative location and value of each

data item at times t-3,4,5 and 6, where t-l is the time at

which the array started its execution. By following the data

paths, we can convince ourselves that the output of the

* array will include the sequence (yl, y2 , .. Yn+l-k

*Although the concept of systolic networks is very well

developed, the notation used to describe the input and out-

put data of a systolic network is sometimes ambiguous and

reflects poorly the relative timing of the different data

streams. Moreover, no rigorous techniques appear to be

known for a formal verification of the operation of such

networks. To the knowledge of the authors, there has been

only one attempt (6] to verify formally the operation of

systolic networks based on a proof technique used in the

verification of distributed systems (4]. This technique

does not make use of the special properties of systolic net-

works and hence gives only rather general results.



In this paper, we suggest a technique designed specifi-

cally for verifying the operation of systolic networks. In

section 2.1 the data sequences are introduced to represent

the data appearing on the communication links at successive

time intervals. In the same section, we discuss the causal

operators which model the computations performed by a cell

of the network. This concept was primarily inspired by

corresponding approaches in systems theory [7].

In section 2.2 and 2.3, we present the mathematical

model on which the verification technique is based. This

model carries some of the properties of a model called

"automaton networks' [3] which in turn is a modification of

the von Neumann cellular array [5,11]. However, the two

models have more differences than similarities, and are used

in completely different contexts.

In section 3 we describe the different steps of the

suggested technique and give a simple illustrative example.

Finally, in sections 4,5 and 6, we demonstrate the tech-

nique by applying it to the verification of some realistic

systolic networks that have appeared in the literature.
Vo

.w
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2. An abstract systolic model.

•2.. Data seauences and causal relations.

We define a data sequence to be an infinite sequence

whose elements are members of the set RO-R U (0, where R

is the set of real numbers and 0 denotes a special element,

not belonging to R, called the "don't care element". We

extend each one of the four basic arithmetic operations lop"

'defined on R to R. by adding the rule that the result of

any such extended arithmetic operation on Ra involving 8

" shall equal 0. That is if 'op' '+', -, 1' or '4', then

L0 'op' X - X 'op' 0 - 0 for all xeR 0

Clearly, operators may also be defined directly on

R8 . For example, we will consider later the binary operator

* such that for any x,ycRO,

x * y - x + y, if x,yOO; x * a - 8 * x - x (2.1)

Two otfier operators that will be used in section 6 are the

operators min and max8 defined on an ordered pair (x,y),

- x,yER0 by

" minfxy) if x,y0O

mino(X,Y) .

y if x-6 or y-8

and
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rma:ifx,y) if x,y8

max, (xy )

" I;x if x-O or y-8.

where min() and maxf) carry the usual meaning on R.

Let N be the set of positive integers, then any data

sequence 7P is defined as a mapping from N to R that is,

'-:. th
the image element 7y(i), iiN, is the t element in the

sequence. The set of all data sequences, that Is the set of

all such mappings, will be denoted by R0  ( I:N-R

Any arithmetic operation on R is extended to R. by

applying the operation element-wise to the elements of the

sequences with 0 being the result of any undefined opera-

tion. For example, if 'op' is a binary operation defined on

R. , then for all 71 ,12 cR , we have i 1 op' 2 " 73 where

for all ieN, 713 (i) is given by

V.if 713") is defined

(p i otherwise.

We will ale'o use scalar operations on sequences. For

example, "0 f Alar product of a sequence 7?fR. and a number

wlR is defined as the sequence C - w . cR for which

IMP
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((M) - w 7(1), iN.

Given the previous definition of data sequences, we

define the set of bounded data sequences R0 c RO to contain

those sequences having only a finite number of non-8 ele-

, ments. It is then natural to introduce the termination

function T:Ra-.N such that for any VeRV, T(71) is the posi-

tion of the last non-8 element in V; in other words:

for any.77eR.,T(n)-i -- n(i)*8 and r(j)-8 for J>i.

In this paper, we will denote bounded data sequences by

small greek letters and simply refer to them as sequences.

3This will not cause any confusion because we will never con-
sider anything but bounded data sequences.

In addition to the operators extended from R. to R.'

we may also define operators directly on R8 " In general,

an n-ary sequence operator r is a transformation r:[R] n-R8

where (R0 ]n-R8 xRx.. .R8 is the cartesian product space of n

- copies of R." Two basic unary operators that will be fre-

quently used in this paper are the shift operator fk and

the spread operator •r defined by:

nl - and er I ,

where

A-i
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- (i-k) ieN.

I (1X) i-l,r+2,2r+3,...,(n-l)r+n,...
-~r+l

18 otherwise.

More descriptively, nkinserts k 8-elements, at the begin-

nling of a sequence, while e r inserts r 8-elements between

every two elements of a sequence. For example if

I-a1,a 2 a 3,a 4,,. then T(U-4 and

- a1 ,8,8,a 2 ',8,,aV,8,0,a 4 ra r.a

It is easy to verify that the termination function generally

sat is f ies

*T(fl k - TWI+k

ToBr,~) - (r+l)T(f)-r

It is also clear that we can define a sequence operator

by combining previously defined sequence operators. For

example we might def ine an operator r:R a xR xR,, -'Ra as fol-

lows:

r(Ci,c) - nlU + V * C]

where square brackets are used for grouping and parenthesis
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for enclosing the arguments of the operator.

* .We next define a causal operator to be any n-ary

sequence operator F:(R]n..Ra which satisfies the causality

property in the sense that the - ith element of any of its

operands can only affect the j th element of its image for

* j>i. In order to formulate this more precisely, assume that

for any given sequences vreRo r-l,2,...,n, the image under

r is -r( l-71 r , ..71n). Then .is a causal operator if by

replacing any operands nr by another sequence n r satisfying

nr(t) - nr(t) lggt<i

the resulting image ' - (7,..71 r',..71n) satisfies

In other words, the value of I(i) depends only on the

* first i-I elements of nr' l'rdn.

Similarly, we may define weakly-causal operators for

which the ith element of the image sequence J(i) depends

only on the the first i elements of the operands V r' laran

instead of the first i-l elements. With this, it is easily

..seen that the combination rI r2 (or r2 11) of a causal

operator r1 and a weakly-causal operator r2 is a causal

operator. For instance, the shift operator nk is causal
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and the spread operator er is weakly causal; hence, the

combined operator (k er is causal.

2.2. The abstract model.

In order to define the mathematical model used in our

verification technique, we define as usual a loop-less mul-

tigraph G(V,E,%o_,%) to be composed of

(a) a set V of nodes;

(b) a set E of directed edges;

(c) two functions p_,,+:E-V. satisfying the condition

that for any edge eeE,

-_(e) o+(e) (2.2)

For each edge ecE, the nodes v_(e) and %o+(e) are the

source and destination node, respectively, of that edge.

Clearly, the condition (2.2) prevents any direct loops in

the graph. This definition of a multigraph allows any two

nodes to be connected by more than one edge in the same

direction, a property that may be useful when we represent

systolic networks by this abstract model.U

As usual in graph terminology, for any node vEV, the

edges (e;,_(e)-v) directed out of v are termed the OUT

1P edges of v, while the edges (e;v+(e)-v) directed into v are

termed the IN edges of v. Accordingly, the IN-degree and
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OUT-degree of v are the number of IN edges and OUT edges of

v, respectively. Any node veV with IN-degree zero or OUT-

degree zero is called a source or a sink, respectively. All

other nodes are called interior nodes of G. We shall use

- the notation VS , VT and VI for the subsets of V containing

the source, sink and interior nodes of V, respectively. Of

course, the condition V. U VT U V, - V is always satis-

fied.

With this notion of a multigraph, we define our

abstract systolic model to be composed of the following com-

* ponents.

[Al] A multigraph G(V,E,v_,v+).

[A21 A coloring function col:E-CE, which maps E into a

given finite set of colors CE and hence assigns a color

to each edge in E. The coloring function is assumed to

*/ satisfy the condition that the different IN edges of a node

have different colors, and correspondingly that the dif-

ferent OUT edges of a node have different colors. Edge

colors y-col(e), will be denoted by lower case letters.

[A3] For each edge eE, a sequence I eR0 is specified.

[A4] For each interior node vGV with IN degree m and OUT

degree n, we are given n causal m-ary operators r :[Ro ]m.R0

which specify the "node I/0 description". More
U
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specifically, if 7, j-l,2,...,m and 4 , i-l,2,...,n are

the sequences associated with the IN and OUT edges of v,

respectively, then the n relations

v- r (7 It2 7,.. )-

are the I/0 description of v. The different IN and OUT

edges of v are distinguished in the I/O description by their

colors.

Since by condition [A2] all edges terminating at a

given node v have different colors, it follows that any edge

eBe is uniquely identified by a pair (y,v), where y-col(e)

and v-v+(e). To simplify the notation, the pair (y,v) will

often be written in the form y v and the sequence associ-

ated with that edge will be identified by the symbol 71 v

where we replaced the letter y by its corresponding greek

letter 7.

For practical applications, it is generally desirable

to identify the nodes of the network by appropriate labels

which correspond to the problem at hand. This means that we

introduce a set L of labels together with a one-to-one func-

tion V:V-L from V onto L. In our examples, we usually

*. identify directly the nodes with their labels.

VAfter defining the general abstract model, we next

show how it can be used to define a general systolic net-

work.
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14.. mie ceneral systolic networ.

* By giving a physical interpretation to each component

in the general abstract model we obtain a general systolic

network. The basic idea of this interpretation may be sum-

mazized as follows:

Each interior node represents a computational cell and

* each source/sink node corresponds to an input/output cell

for the overall network. To distinguish in our figures the

acomputational cells from the I/0 cells, we depict computa-

tional cells by circular nodes and I/0 cells by square

nodes.

Each edge xvEE represents a unidirectional communica-

*' tion link between the two cells it connects. The sequence

associated with xv then comprises the data items that

appeared on it in consecutive time units. More specifi-

cally, if Iv is the sequence associated with xv, then the

ith element of I v namely 4 v (i) is the data item that

appeared on xv at time t-i units, where t-l is the time at

which the network started its operation.

For an interior node, the node I/0 description

describes the computation performed by the cell correspond-

ing to that node. We illustrate this with two simple exam-

ples:

EX 1: The hode shown in figure 4 represents a simple
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Figure (4) Figure (5)

latch cell which produces at any time t>l on its output

link the same data item that appeared on its input link

at time t-l. At time t-l, we have v(I)-O, which

corresponds to the fact that at the beginning of the

network operation, no specific data item appeared on

the output link.

EX 2: The operation of the multiply-add cell mentioned

in section 1 and shown in figure 1 may be represented

by the following node I/0 descriptions:

i-'it o  - n ji (2.3.a)

710 = 7in + w .in) (2.3.b)

where weR is a given real number and fin' 71in' to and

7o are the input and output sequences of the node as

1* shown in figure 5.

Since in any practical dynamical system any data item

produced by a computational cell at time t depends only on

the data provided to that cell at times less than t, we

immediately see the importance of the condition imposed in
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section 2.2 on the node I/O descriptions, namely that only

causal operators in the sense of section 2.1 are used. We

also note that with the model described above, the computa-.

Ational power of each cell is not limited to simple arithmet-

ical operations. In other words, a cell could be an intelli-

gent cell that can perform elaborate calculations provided

that we can express these calculations in terms of causal

operators.

We call "network output sequences" those sequences

associated with the IN edges of sink nodes, and "network

input sequences" those associated with the OUT edges of

source nodes. Then the system of all node 1/O descriptions

Kprovides a specification of the computation performed by the
. network in the form of an implicit relation between the net-

work input and output sequences. This relation will be

called the "network I/O description".

As a simple example, consider the hypothetical network

with the graph shown in figure 6. In this graph, we assume

that the edges directed to the left are given the color y

and those directed to the right the color x. We also follow

the naming convention mentioned in section 2.2 in identify-

ing the different edges in the graph. To complete the net-

work description, a node I/O description has to be specified

for each node in the graph. Assume that these are given by

the following causal relations:

For node 1: 1 2 n N 1 +l + (2.4.a)

p"
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10 W fl ( , * i ]  (2.4.b)

For node 2: 13 W 1 l2 (2.5)

For node 3: V1 f1 3 W13 ]  (2.6)

-1 X X3nde

Figure (6)

For this network, v13 and 11 are the network input sequences

and 710 is the network output sequence. In order to obtain

the network I/0 description explicitly, we have to solve the

equations (2.4), (2.5) and (2.6), that is, we have to obtain

an explicit expression for V0 in terms of 1 and 113.

Generally, it is very difficult, and sometimes impossi-

ble, to derive an explicit solution of the system of node

I/0 equations. In the next section, we show that this task

may be greatly simplified in the case of certain networks

with a homogeneous structure.
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. Homogeneous Systolic Netwok.

By condition [A2], any edge ecE is uniquely identified

by its color and one of its incident nodes. In fact, we

used this already as a convenient means for identifying

edges by their color and terminal node. Let M c CE XV be

the set of all pairs (y,v), yaCE , v6VI, for which there is

an edge ecE with y-col(e) and v-v_(e). Then the terminal

node u- +(e) is uniquely given and hence the successor

function a:M - VI U VT is well defined by the association

(y,v)GM, y-col(e), v-'P_(e) - A(yv)= P+(e).

£ In other words, if there exists an edge e with color y and

starting node v, then a(y,v) is the terminal node of e.

Given a systolic network based on the graph G-

* (VE,o_,v+), a subset VlS V1 of interior nodes is said to

be a homogeneous set if:

(Il] All the nodes in VI have identical IN and OUT

degrees, say m and n, respectively.

[H21 The m colors of the IN edges of any interior node

vV I are identical. So are the n colors of the OUT

edges of v. Denote the colors of the IN and OUT edges

of v by ,. and z 1 , respectively.

(H3J The node I/O descriptions of any interior node

....
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vEV I are generic in the sense that they may be written

in the form:

rz F ( 10,71 2,...,7) , . n
A(z i,v) V

where F ,i-l,2,...,n are given n-ary operators which

are independent of the particular node in V1 , a is the

successor function defined earlier in this section and

7- J-1,2,...,m and Ci i-l,2,..,n are the
V " 

(z ,v)

sequences associated with the IN and OUT edges of v,

respectively.

A network is said to be homogeneous if the set of inte-

rior nodes VI in its graph G is a homogeneous sot. More

generally, if there exists a partition

VI V1 i 2 U ... U Vk of V into k non-empty homogeneous

subsets V, V...,V, then the network is said to be k-

partially homogeneous.

The main advantage of having a homogeneous (or par-

tially homogeneous) network is that the resulting system of

equations has a repetitive pattern,' which, in many cases,

allows us to obtain an analytical solution to the system.

W This should become clearer as we proceed with the different

examples.
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To verify the operation of a systolic network, we are

generally interested in its behavior for specific inputs,

that is we wish to find the form of the network output

sequences for specific network input sequences. This is

usually accomplished by substituting the given input

sequences in the network I/O description and manipulating

the resulting equations to obtain the description of the

network output sequences.

As a first example of our verification technique, we

49 consider again the 1-D convolution network described in sec-

tion 1. The graph of this network is shown in figure 7,

where we assumed that the edges directed to the left have

the color 's', while those directed right have the color

pl. The nodes of the graph are identified by the integers

-l,0,1,2,...,k+l,k+2, where nodes -1 and k+2 are sourr-a

nodes, nodes 0 and k+l sink nodes, and nodes 1 through k

interior nodes. The successor function is defined for any

S interior node il,2,...,k by

node. nd ode
Lfr k -1

* k+l sk+ Sk Sk.I s1+1 s s 3  S2  S1

Figure (7)
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{ i +1 if y-s
.(y i) -Iif p

Our goal is to verify that the network indeed produces the

results of equation (1.1) for the network input sequences

described by

o nk-i 6L (3.l.a)

k (3.l.b)

.W where

T(&)-n-(k-l) ,L(t)-O

T()-n ,(t)-xt

The I/0 description of a typical interior node i in the

graph, lslik, is given by the following causal relations

9-I -f i (3.2.a)

oi =a [oa + wi  i ]  (3.2.b)

U This system of difference equations is easily solved.

First, note that the solution of (3.2.a) obviously is

i nk - Vk  (3.31

By substituting this in (3.2.b) we obtain

O J+= 0 i + wi . [ k - +l n, ] (3.4)

The solution of (3.4) is then given by lemma 1 in the appen-

dix as:
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kk al + kI N j - I (Wk+ nk - (k - j + l ) + l vk
0k+l 1 E Wk-j+1 k

i.nk 'l + =n2j-1a 1 +En [wk-j+ 1 . k ' (3.5)

This is the I/O description for the network.

In order to find the specific form of the output

sequence ak+1 for the input sequences (3.1), we substitute

these sequences into (3.5) and obtain

2k-i e L + -

Ok+ 1 ' n 8 1 k-j+1

By the properties P1, P2, P3 and P4 in the appendix, this

may be rewritten as

o 2k-1ik 20-n k euk+1 . -j_1

- f 2kl e L + n a n (-.) kWE njki+ 1 (k]
i-

2k-i k 1Sn k -  9 + n e n n3 1 w
j-, 3I3

wnere T(7 )-T(j)-n and 77.(t=w_ x(t)-wk_+1 .xt .

Finally, applying P5 of the appendix we find:

2k-i k -I

' n e8 (+ ne ] 7a~ n2k-1 e [L + 7]

- n2k-I 8 7 (3.6)

where n is defined by:

i°
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T(w)- n-(k-l)

k
" " (t) n (t+k-j) lt4T(71)

= Wk-j+l Xt+k_ IitT(i)

k
q-l q Xt+q-l l't'T(7)

In the last line, the summation index was changed to q-k-

j+1 in order to provide for the same expression as in (1.1).

Evidently, equation (3.6) represents the output of the

array in a clear and precise form; it indicates that after

an initial period of 2k-l time units, the elements

- 7(t)-yt, l't'n-(k-l), will appear on the output link, each

separated from the other by one time unit.

A variation of the above 1-D convolution network may be

obtained by defining the I/O description of each node in the

network to be given by (3.2.a) and (3.2.b) with the +

operation replaced by the e operation defined by (2.1). By

a similar analysis, it can be shown that the output of the

moditied network is described by

ak+1 "i e 7'

where T{n') - n+k-i and

wt
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t

S3 lWk _+l Xt _3+ 1  
l~t k-1

k
'(t)- l.Wk_!+l Xt-j+ 1 l~

k
-n k-j+l xt-j+l n+l't&T(7l').

j-t-n+l

In the previous example we applied our technique to a

homogeneous network. The technique is equally applicable to

k-partially homogeneous networks if k is reasonably small.

In that case, a system of difference equations is formed by

writing the generic I/O description for a typical node from

each homogeneous subset of interior nodes VI, i-l,2,.. k.

The network I/O description is then obtained by solving this

system of equations. The back substitution network and the

sorting networks discussed in sections 5 and 6 are examples

of 2-partially homogeneous networks. The LU decomposition

network described in (1] is a 4-partially homogeneous net-

work that can be verified by the same technique.

Finally, we note that the explicit derivation of the

network I/0 description depends on our ability to solve the

resulting system of difference equations. However, even if

these equations cannot be solved explicitly, we may still

* verify the operation of the network if we have an idea about
U

the network behavior and consequently about the sequences on

the different edges of the graph. In fact, we need to show

p, '
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only that for the given input sequences, the expected

sequences satisfy the system of difference equations. We

demonstrate this procedure in section 6 by verifying the

operation of a sorting network for which we could not solve

the system of equations explicitly.

U

w

I'
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[4. A band matrix multilicatio network.

In (1], Kung and Leiserson suggested a systolic network

for the computation of the product of two band matrices

C-A*B, where both A and B have lower bandwidth kI and upper

bandwidth k2. In this section, we shall consider only the

case k1-k2-k and prove formally that the suggested network

indeed produces the product matrix C. Moreover, the

sequence notation used in the verification procedure will

provide an accurate representation of the I/0 data includ-

ing the input timing required for proper operation and the

timing of the output data.

In figure 8.a we show the directed graph of the matrix

multiplication network. The nodes of the graph are regularly

laid out so that each node can be labeled by a pair (i,j) of

integers, where i and j are the relative position of the

node with respect to the two perpendicular axes shown in the

. figure. The set of colors CE has three elements, namely

p, r and s, and the coloring function col() maps the edges

directed to the south-west, south-east and north to the

* colors p,r and s, respectively.

The network is homogeneous; it consists of only one

type of computational cell, namely the multiply-add type

cell shown in figure 8.b. Its generic I/O description is

*given by the causal relations:



J-axl s i-axis

/ col or s

-color p color r

r, l b'
% 2,

* -IJrr' 1,2 S2. P '

ri sP 0 2 0, 1 2,0 PI -

node
i ,J 1,1 0.0 1

-1,0 0r

si~i S1,0 s0,-i

s-1 ,-1
Figure (8.b) Figure (8.c)
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P flp(4.1. a)

ii. infl (4. 1. b)

Oi+l,,j+1 n( if + P. *' A7 * ] (4.1.c)

in line with the definition of homogeneous networks, this

description is valid for any cell (i,j), -kdi,jak.

As an illustration of the network topology and its dif-

ferent data streams, we show in figure S.c the general net-

work for the special case k-i, that is for the case of twd

Ur tridiagonal matrices A and B. In the figure, the

* source/sink cells were omited for clarity.

In order to obtain the 1/0 description of the network,

we have to solve the system of difference equations (4.1),

*and express the network output sequences a qkland a klq

-kk-l)aqhk+l in terms of the network input sequences puk

I k,u' a-k,u and ou,_k' -kauak. For this, consider first

the simple equations (4.1.a) and (4.1.b) which have the

solutions

i,k

- ak-i kj

By substituting these values into (4.1.c) we obtain

a i+l'j+l f(a o +6 a 1~ (4.2)

where A n k - n k-iPi,k 1k, j
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By an inductive argument similar to the one given in

the appendix for lemma 1, it is easily shown that for

-(k-I) A i,j ak+l, (4.2) has the solution:

A [" i+k 0 k+ l k +iEN i

0. =1 F -- q j-q 1

ni+ka
' a-k +E nq a

onk,_ k  l i-qj-q

q

With the definition of A and properties Pl and P4 we

find the network output sequences to be

ik Ni+k i+k [
a°i,k+l n °i~k-kl-i + E n2q-iq-I i-qk

• . Nk+j a k+j n2q+k-j
k+l,j 1-,-k E i [k-q+l,k

n q1 rk, j_q] -(k-l)djdk (4.3.b)

These are the network I/O descriptions. Of course, the

network is not expected to produce the elements of the pro-

duct matrix C unless the elements of the matrices A-(a ij)

and B-(b ij) are fed into the proper input links of the

network with the right timing. We will now prove that the

network output sequences will contain the elements of C if

the input sequences are specified as follows:
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I! u,k ' n 2 (k+u) e 2 au -kauak (4.4.a)

1k, u - n (k+u) e 2 OU -kau'ak (4. 4. b)

a-k u'n .2 (k+u) 82 U -k'ugk (4. 4.,c)

0u k 2(Ku 2 LU -k~u'k (4.4.d)

where

* .T(*O )-T(au )-n, T(L u)-n-(k+u), LU(t)-O

* and the sequences flu,, au are defined as follows:

For u(0

j0 1' t -U

OU~t)(4.5.b)

b t+ut -~

For ubO

a U(t) -~(4.5.c)

0 n-u~tin

Ou (t) -j(4.5.d)

-0 n-u~t'n

Roughly speaking, the input link Pku , kau'k, contains
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the uth off-diagonal of the matrix B, while the input link

r U'k , -kdu-k, contains the (-u) t h off diagonal of the

matrix A. Of course the exact timing of the input data is

defined by the formulas (4.4).

For the sake of breviety, we cosider here only the

equations (4.3.a) and show that the output links 5 i,k+l,

-(k-l)'idk+l will carry the elements in the lower band of

the product matrix C-A*B, including the diagonal. By a

similar procedure, one can use (4.3.b) to show that the

links ak+lj' -(k-l)'jak will carry the upper band of C.

By introducing the specifications (4.4) of the network

input sequences into (4.3.a), we obtain for -(k-l)aidk+l

the following formula:

k+i 2k+2i- 2
ql 2k+2i-k-i+2 e2

a i,k+l' + [ efa i-q e k-q+l]

=i + n2k+2i-I k+i 2 a iq n3(ki+l )  2

k+i

-i + n2k+2i-l 02 E I ai-q * nk-i+l Ok-q+ 1

q-l

where L = 5ki+2 e2  l-i* With property P7 the product

term becomes

V k .+i
a l + n2k+2i-1 e 2 kE n k - i+l 7q (4.6)
i,k+l 'i +l6qal

where T(7q) -n-(k-i+l) and
iI

UT
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71(t) - Gj~q(t+k-i+l) *k~q4l~t)

Simplifying (4.6) and using the definition of Lif we find

that

.. k l 5k-i+2 2 5k-i+2 e2 k+i°i,k+l" 1l-i + "

q-l

ii.- . O~~5k - i + 2 e2 [I i  
]

where T(n i) - n-(k-i+l) and

f1

k+i71~t M 'Y ,(t) -(k-I),i-k+l
q-l

k+iM~ J1ai-q (t+k-i+l) ek-q+l (t) -(k-1)-& -k+ 1

(4.7)

Finally, from the definition of t1 -i.we obtain that

ai,k+l n 5ki+2 2 ?i -(k-l)di-k+l (4.8)

Equation (4.8) describes the timing of the output data

on any link Si,k+l' -(k-l)Ai'k+l. It indicates that on

Si,k+l' there will be an initial set up time of 5k-i+2

units, after which the elements 71i(t), t-l,2,..,n-(k-i+l)

will appear separated each from the other by two time units.

We still need to show that n i(t)-ct+k-i+l,t, that is that

cst5 1,~lcarries the (k-i+l) s sub diagonal of the matrix C.
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To evaluate 71 (t) from (4.7), we use the definitions

(4.5) to write a. i(t+k-i+l) and Ok-q+l(t) for the values

of t between 1 and n-(k-i+l), which are the values of t

assumed in (4.7). The resulting formulas are:

0 if u(O and ldtaq-(k+l)

:(t,i,q) if u(O and q-(k+l)<tan-d

a U(t+d)-~ (4.9.a)

a(t,i,q) if ubO and Idtin+q-(k+l)
0 if ubO and n+q-(k+l)(tin-d

0 if v(O and ldtiq-(k+l)

b(tq) if v(Q and q-(k~l)<t'n-d

S, (t)- '(4.9.b)

b(t,q) if vbO and ldtdn+q-(k+l)

o if vbO and n+q-(k+l)<tdn-d

where, for simplicity, we introduced the notation

u - i-q, v "k-q+1, d - (k+l)-i,

*a(t,i,q) - a t+dt+d~u and b(t,q) - b t+Vlt*

which will be used repeatedly in the remainder of this sec-

tion.

It is clear from (4.9) that the evaluation of n i (t) by

(4.7) is non-trivial and depends on the relative values of i

w and q. For this purpose, we consider two different cases:
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Case j: If -k-l) o.

In this case and for l-qak+i, the inequalities u-i-q(O and

v-k-q+lbO always hold. Moreover, we have q-(k+l)-O and

n+q-(k+l)>n-d. Accordingly, we can use the above condi-

tions to determine the appropriate values of a (t+d) and

Sy(t) from (4.9), and with these in (4.7) we obtain the

formula:

k+i
7i(t) - q= at+dt+k+l-q bt+k+l-qt latan-d

* By changing the summation index to J-t+k+l-q this is indeed

t+k
(t) - E at+dj bJ 1't'n-d (4.10)S=t +d-k , ,t

Case 2: If la'ik+l.

In this case we always have u-i-q ' v-k-q+l. Accordingly,

we divide the sum in (4.7) into the three partial sums

k+i i kk+i

E - r + E + E
ql q=l q-i+l q-k+l

For simplicity, we refer to these three sums as El. r 2 and

£3 , respectively, and evaluate them separately.

i
In the case of ta E bb(t), we note that the condi-

* tion l'q'i implies that vhuaO. Hence, by (4.9) we have
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a(t,i,q) b(t,q) if 1'tdn+q-(k+1)

7q? (t) -

to if n+q-(k+l)(tan-d

By standard rules of operations with summation symbols, Z.

can be expressed as

ir E a(t,i,q) b(t,q) if 1'tan-k
q-l

- (4.11)1 E a(t,i,q) b(t,q) if n-k<tan-d

k q
We turn next to E 2 1' (t). In this case, we have

u(Odv, q-(k+l)(O and n+q-(k+l)>n-d. Hence, from (4.9) it

follows that

yt)- a(t,i,q) b(t,q) l't'n-d

which gives directly

Vk

1:2 - E a(t,i,q) b(t,q) l'tan-d (4.12)
q- i+ 1

Finally, in the case of Z3 the inequality u'v<O holds.

Therefore, we have
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So if l't-q-(k+l)

a(t,i,q) b(t,q) if q-(k+l)<tdn-d

which gives

k+t
E a(t,i,q) b(t,q) if lt'i

q-k+l

: 3 (4.13)

k+i
* E a(t,i,q) b(t,q) if i<tdn-d

q-k+1

Now 7 i(t) is obtained by adding the sums (4.11),

o(4.12) and (4.13) on three different intervals for t. This

sum is given by

k+t
_ ;r a(t,i,q) b(t,q) ldtdi

q-1

k+i
* (t) - a(t,i,q) b(t,q) i(tdn-k

q-I

k+i

E a(t,i,q) b(t,q) n-k<t'n-d
q-t-n+k+l

By changing the summation index to J-t+k+l-q and sub-

stituting the appropriate values for a(t,i,q) and b(t,q) we

obtain

W
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t+k

F at+dj bjt list&i

t+k

a b i-ktn-
4 1 ~ -i-dk t+d, jj , t

-tt -k~tn

Note that the above formula for 71.(t) is valid for
i

laii4ki- while (4.10) is valid for -(Jc-1)'aia0. These two

formulas are equivalent to those resulting from multiplying

the two band matrices A and B, which proves that for

t-1,2,...,n-(k-i+l) and -(k-l)'siak+l, we have indeed

- Ct+d,t Ct+k-i+lt*
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[- A back substitution network.

In this section, we apply our verification technique to

a systolic network that contains two different types of com-

putational cells, namely the back-substitution network sug-

gested in (8]. This network performs the back substitution

operation to solve the linear system of equations

L u - y (5.1)

where L is an nxn non-singular, banded, lower triangular

4 matrix with the band width k+l. and y is a given n-

dimensional vector. The solution of the system (5.1) is

given by the formula:

Yi /  i'i i-l
U V1  / 12

ui "(Yi 1-i li ,i-j ui-9 ) / i~ i 2 k

k(yi- lii- ui-) / l i k<i n

where 1 i, is the (i,j) th element of the matrix L, andi,2j

and u i are the i
t h elements of the vectors y and u, respec-

tively.

Figure 9 shows the graph of the suggested network. It

is a 2-partially homogeneous network, composed of k

multiply/add (M/A) type cells, and one subtract/divide (S/D)

cell. The computational cells are labeled by integers such

that the cells 1 through k are of the M/A type, and the cell
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a. a, 1 ak
tao la, ja2 jai ak-1 ak

od de odenonode node
0 1 2 k -- Jk+I

Vrl r 3 r. ri+ rk rk

. b

Figure (9)

0 is the S/D cell. As for the I/0 cells, we must be careful

to assign labels to the sink cells because these labels will

be used to identify the network output links. The labels

given to source nodes are immaterial as they do not affect

the verification procedure, and consequently are not shown

in figure 9.

In the regular layout shown in figure 9, the edges

directed to the south, north, east and west are given the

colors a,b,r and s, respectively. The set V1 of interior
1

nodes in G is divided into two homogeneous subsets V,-(0)

II* and V-{i:i-l,2,... ,J}. The operation of the cell

* represented by node '0' is described by the causal relation

w Pl [0 - aO  + aO ]  (5.2)

and the operation of any M/A cell represented by a node i,

l'i'k, is described by the generic I/O description

Pi+l P1 il,2,...,k (5.3.a)

oi- 1 " n[o i S ai pi] i-l,2,...,k (5.3.b)



- 40 -

where thee was defined by (2.1).

To solve the system of difference equations (5.2),

(5.3.a/b), we first write the solution of (5.3.a) as

P - ni-i p1  l(i-k+l (5.4)

from which we find that

• NkPk+Jl' Pi (5.5)

Substitution of (5.4) into (5.3.b) then gives
V

i-= [0o i ] (5.6)

where A. - a. * (ni- 1 P. Using an inductive argument

similar to that in the appendix for the proof of lemma 1, we

can show that the solution of (5.6) is

O 0 k O k kt n n - 1COMnO [a i P1] (5.7)

• k

For given pl, the network output sequence Pk+l is

easily obtained from (5.5). The next step will be to elim-

inate a0 from (5.2) and (5.7) and to obtain p1 explicitly

in terms of the network input sequences k, %0  and a,

J-0,l,...,k. Unfortunately, if we try to solve (5.2) and

(5.7) simultaneously, we will obtain a recursive equation in

pI' which is very difficult to manipulate in general. For
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this reason, we consider only specific forms of the net-

work input sequences, namely those required for the proper

operation of the network. They are given by

a 0 e- i-01X.., (5.8.a)

0W ke 77 (5.8.b)

a k ' eL (5.8.c)

with TO.) T(t) T(71 n and

V0 1't'6i

lt't-i i~tan

V~t) - yt 1't'an

L~) - 0 1'dtan

Fri Substituting (5.8) into (5.2) and (5.7), we find that

P1 M n [fl e 00) + 03 e ko8 (5.9-a)

00onn~ e LE t in ex~ ni p1] (5.9.b)

Since O-x-O for any XeR., (5.9.a) implies the existence of

a sequence I such that

Mnk+ 1 5.0p1 -f C(.0

V whence, by (5.9.b), we find that

k C~ k k 2i+k ~C
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lk B k IX * nli ] ]

where we used property P2 to interchange f2 j and e. If in

addition we let

k
Y - L ) [ "J '] (5.11)

then we can substitute for a0 and p1 in (5.9.a) and obtain

nk+l e 1 - n [[nk e nk e y] + nk e )0 ]

which reduces to

[ - + X0  (5.12)

For an explicit description of the sequence v, we need

to examine (5.11) more closely. We start by applying pro-

perty P7 to the product term in (5.11), namely

X * n I I ni Aj

where

T - min( T( )-j , T(4) ' n-j (5.13.a)

and

it(t) - x* ((t) (5.13.b)

This enables us to rewrite (5.11) as

k
L) L nJ u1  (5.14)

11

U
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From (5.14) and the definition of the '+' operator, we con-

clude that T(Y) - max(T(L) , T(MQ)+J) - n, and conse-

quently from (5.12) that

T(() - min(T(r) , T(7) , T( 0 )) - n.

Using this in (5.13.a) we easily see that T(AM) -n-J.

Now, we apply property P6 to (5.14) and explicitly describe

v by

T(7) - T(L) - n

and

0 t-i

~t-i

' (t) - (.t-3 t-2,3,...,k

j(t-J) t-k+l,k+2,... ,n

Finally, with these specific descriptions of X 0 and

.* v, we directly find the explicit form of the sequence ( in

• (5.12) to be

(t) = ( (t) -Y (t)) / )o(t)

that is
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Yt / t~t t-l

A comparision of this expression with the formula given

in the beginning of the section for the solution of (5.1)

shows readily that

Pk~l 02k+1 1

where T(J) -n and 1(t) u Ut.
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.k sorting network

The sorting network (2,9] described here accepts an

indexed set X-(xl,...,xk) of k different real numbers,

x 1 eR, icK-(l,...,k}, and produces as output the same

numbers sorted in ascending order. Figure 10 shows the gen-

eral graph of the network and the labels given to each node.

In the figure, the edges directed to the right and left are

colored s and p, respectively.

For any jeK, let yl,...,y be the result of sorting

the j elements x1 , ...,x jof X in ascending order. Then for

all (i,j) of D-{(i,j)cKxK; l'i&J'k), the ranking function

f x:D-X is defined by f x(i,))-yi.

With this, we will prove that if the network input

sequence wk is given by

Sk

nod odenod node

k+1 Sk+1 Sk Sk-1 + 1 S 2

W Figure (10)
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9 k =e 1 (6.1)

where T(M) - k and I(t) - xt, then the network output

sequence Ok+l has the form

ak+ 1 - 2k-1 8 7 (6.2)

where T(r) - k and 7(t) - f x(t,k).

The network considered in figure 10 is a 2-partially

homogeneous network. The cell labeled '1' is a simple latch
cell whose operation is described by

ao2  r n1 (6.3.a)

while the I/O description of the cells i-2,...,k is given by

i 1-1 "n maxs(Wi,oi) (6.3.b)

a i+1 n minaOi )  (6.3.c)

where maxa and min were defined in section 2.1. In other

words, the cells i-2,...,k are comparision cells which

operate as follows: At any time t, if neither one of the two

inputs oi(t) or 7I(t) is a don't care element 8, then the

cell compares the two inputs, and produces as output at time

tel, the largest and the smallest numbers on the links pl

and si+l respectively. However, if any of the inputs is 8,

9, then the cell acts as a simple latch cell, that is, if

ai(t)-8 or vi (t)-8 then

p
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wi...(t+1) - l~(t) and ai+i(t+l) a ai(t)

To obtain the network 1/O description, the system of

equations (6.3.a/b/c) should be solved for akil* However,

the recursive nature of (6.3.b) and (6.3.c) makes this very

difficult, if not impossible. One possible alternative is

to suggest a tentative value for the sequences vwi anda

and then to verify that these suggested solutions indeed

satisfy (6.3). Of course, any assumed value for i should

reduce to the input sequence (6.1) for i-k.

Let us assume that v and a. are given by

a 1 0k+i-2 e 43 2&ik+l (6.4.b)

where T(a)- T(Ai k,

a. (t)I i ()'k

and

f x(t,t+i-2) akli

O (t)-

f x(t,k) k+l-i(tdk
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i. It is very easy to verify that (6.4.a) reduces to (6.1)

for i-k. Hence, our next step will be to check that (6.4)

does satisfy (6.3). For i-1, (6.4.a) reduces to

P. 9 1 M o k-i e a 1

where T(a )-k, and

t x t  t-1

* max 8 (xt,fx(t-l,t-1)) l<t'k

Since f (Jj) is the maximum element inx

(Xlx 2 ...I Xj, it follows that xmfx(ltl) and

maxa(xt,fx(t-lt-l))-f X(t,t). Hence, we may write

a1(t) - f (t,t) l't'k

But from (6.4.b), we obtain for i-2

02 a ik e $2

where T(02 ) k and 02 (t) fx (t,t), ldt'k, which

proves that 2 - al , and hence a - f iT2 2 1

The next step is to show that (6.4) does satisfy

(6.3.b). For this, we sustitute (6.4) into the right hand

V side of (6.3.b) and denote the resulting sequence by p.

This gives
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P " n max (nk-i e ai  n k+i-2 e le 2-ik

Using property P2 to interchange (2(i1- ) and e in the

second operand of maxa we obtain

p W nk- (i- 1 ) e ' (6.5)

where vi - maxa(ai , ni-i $i. By definition of max., it

follows that T(Yi) - T(ai) - k, and

max~ai(t)'$i (t-i+l)) i-l<tdk

Hence with the definitions of ai(t) and 2(t) we obtain

x t  ldt'i-I

.. 'i(t) max~xt , fx(t-i+l,t-l) t-i

:max~maxfx t F f x(t-ilt-l)} f fx(t-i+l,t-1) }

V, i<tk

Because of max{ max(a,b) , c) - max(a,b,c), and

f (t-it-1) < f (t-i+l,t-l), we may rewrite v1 as

rXt lit'i-l

V vi(t) -

max(xt I f(t-(i-l)t-l)} i-l(tdk

from which we find that vi(t) -aii(t), and hence, by
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y(6.5) and (6.4.a), that p v This proves that (6.3.b)

is satisfied for the values of a.i and vi given by (6.4).

Finally, to check that (6.4) does satisfy (6.3.c), we

* substitute (6.4) into (6.3.c) and denote the resulting

* sequence by -r.. This gives

T -n mn a(nk-i e ]c +i-2 042&ik

W rjk-i+l e min 8 (ai , ni- i)

In view of

min a(a i , n n j-

where T (op - T (20 - k and

p1 i~(t) -

we write

T W rlk+(i+lV-2 e q. (6.6)

-From (6.6) and (6.3.c), it follows that r - a only

if 'P - l To prove this, we substitute the definitions

of a 1 (t+i-1) and 0 i(t) into opi(t) and obtain
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Smin~max{x t+i_1 f fx(t-l,t+i-2)} f fx(t,t+i-2))

f x(t,k) k-(i-l)<t~k

But from lemma 2 in the appendix, and the fact that

fx(t,t+i-l) - f (tk) for t-k-i+l, we may write oi(t) as

fi t " f (t,t+i-l) l4t~k-i

f X(t,k) k-i<t~k

It follows that Oi(t) - Oi+1 (t) and therefore that

1 - a i+ .  This completes the proof that the sequences v.

and ai of (6.4) indeed satisfy the system of equations

(6.3).

Now that (6.4.b) is known to be a valid formula for the

sequence ai, we can easily obtain the network output

sequence ak+l by setting i-k+l. This gives

= 2k - 1
0k+l e k+l

where T .. +) - k and k+l (t) - f x(t,k), latak which is

identical with the expected output sequence (6.2).
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7. Concluding Remarks:

This work was meant to contribute to the area of sys-

tolic architctures in three different ways, namely, by pro-

viding a mathematical model for systolic networks, an unam-

bigious description of its input and output data, and a

technique for the verification of its operation.

The central concepts in the present model are those of

data sequences and sequence operators. Although we only

defined the few operators that were used in the examples, it

s3hould be clear that other sequence operators may be intro-

duced to model other types of computational cells.

A further step in this area is to develop a more com-

plete sequence algebra to provide a basis for a solvability

theory of the resulting system of difference equations on

sequences. More specifically, it would be desirable to

determine under which conditions an explicit analytical

solution for the system of difference equations can be

obtained. For a given network, this might determine, the

properties to be satisfied by the successor function A and

the node I/O operators in order to verify analytically the

operation of the network. If a sufficiently flexible alge-

bra of this type were available, our model might prove to be

very powerful in the design of new systolic networks.

At this point, we note that even if we cannot solve the

resulting system of equations analytically, we can still use

V
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a numerical iterative procedure to solve it. This approach

is very close to the simulation of systolic networks, but

appears to be more general and systematic.

Finally, we note that throughout this paper we assumed

the systolic network to operate synchronously. However, the

same model and techniques can be used for asynchronous net-

works. The only difference is in the interpretation .of the

ith element of a data sequence, which now has to denote the

hi data item that appeared on a communication link instead

of the data item that appeared on that link at time t-i.

4

UW

U

U
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Appendix

In the first part of this appendix, we list some pro-

perties of sequence operators that have been used in the

paper. The verification of these properties is straight

forward from the definitions of the operators involved. In

the second part of the appendix, we prove two lemmas; the

first gives an analytical aolution to a difference equation

that appears frequently in the verification of networks con-

taining multiply/add cells, while the second one proves an

equality that was needed in section 6.

Let , ( and 73 j-0,1,2,...,k be sequences in R., and

weR; then

Property Pl: nr nk j . ,r+k

Property P2: n (r+l)k er j a er nk

Property P3: w [ ek ] Xe (w. ]

w . r  n' = - [ w . £]

ProDerty P4: For any binary operator 'op' extended from R
R0' we

to R., we have

n k [4 lop, n k 4 #opt n k

r 4 'op, ] = r , op, er 4



S 7

Property P5: If n j-1,2,...,k are such that T(7j1)-n, then

k
-j 1 n - nk-1

A k
where T(n) -n-(k-1) and. 7(t) - q 77(t+k-j).J-1

The next result uses the ( of (2.1):

Property P6: Let the sequences 7, j-0,l,...,k satisfy

T(71 ) - n-J, then

710 Q)n " n771  2®" On 77k 7 k

where T(Y) - n and

t-1 (t-J)

'Y(t) j t j

r71 (t-J) t-Ic+1,k+2,...,n
J-0

Property P7: Given j,CeR,, then

€ n nr n = r 7

where 7 is described by

V T(v) - min(T(C)-r , T()) and Y(t) - C(t+r) * (t).

6 I: The difference equation

a i+1  - n a i  + aI  i- , , .,i a l

has the solution

V:

! .4.di I , - - i- ' | uJ
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r-10r - al+EnJ -1 Ar ~ r-2,3,3... ,k~l. (a.2)

Proof: The proof uses induction on i. Evidently, for i-I in

(a.l) we obtain

a 2 +

which is identical to (a.2) for r-2. Hence assume that for

any r-l,2,...,k, ar is given by (a.2), then from (a.l) it

follows that

r+1  n r  + Ar

r-1
[r- 1 aI + r, j - Ar  + ar

I- -

'rr 1
1- r-l -r

flr 01 + n fr- + Ar
J--.

r r-l

(r a1 + JEO nJ  A -3

r
n l + E nf-1 Ar

which proves that or+ 1 is also given by (a.2).

Lemma 2: let fx be the ranking function for the set X-{x

x2 , . . .xn)f as defined in section 6, then

min{max{x, , fx(i-l,k-l)) , fx (i.,k-l)} - x (i,k) (a.3)

Proof: Let y, "''' Yk- be the result of sorting xI .

" k-l in ascending order, and z1 , ... , zk the corresponding
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result f or x1  *., X. Hence, f i1k-~xi

f (i.~k-l)-y i and f x (i,k)-z i*Now consider the following

cases:

1)'If Xk < yi-l < yithen the left side of (a.3) is

min(max~x k ' y"i-1) 1,'i - minfy il , yi) yi-

Since z]11 ..., Zk are obtained from Yl'-lk- by inserting

X k in some position before yi-1 , we immediately see that

yi-l , i

2) If yi-I < xk < yi, then the left side of (a.3) is

min(max(x k ' yi1 ' .±) - Xk

and in this case it is clear that xk- z i.

3) If yi-1 < yi < xk ' then the left side of (a.3) is equal

to y1 , which in turn is equal to z.i because, in this case,

x Xk is inserted in some position after y,.
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